
APPLICATION NOTE

NIS.ai AI module for microscopes (Convert.ai/Segment.ai)

Highly accurate and non-invasive cell counts 
utilizing machine learning
Although quantification of cell numbers is an important method in biological and medical research, measurement of fluorescent 
stained cell nuclei etc. involves many problems in terms of measurement accuracy and phototoxicity. The NIS.ai functions built into the 
NIS-Elements software can utilize machine learning to measure cells. In this application note, we demonstrate that the number of cells 
can be measured with high inference accuracy from diascopic phase contrast images using the NIS.ai function, avoiding the effects of 
fluorescent reagents and excitation light irradiation.
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Accurately quantifying cell numbers from phase contrast 
images of unstained cells
Currently, hemocytometers, measurement of cell confluency in diascopic 
images, and image processing of stained cell nuclei, etc. are commonly 
used for cell count measurements. However, these methods have the 
following problems:
• Adherent cells need to be detached.
• �Achieving high accuracy is difficult because the cell area during 

culturing changes according to cell confluency.
• �Since conventional image processing requires cell staining, color 

reduction due to cell division, and photobleaching and phototoxicity 
due to excitation light, etc. often cause problems.

• �The toxic effect on cells due to dye staining must also be considered.

On the other hand, in addition to solving the above problems, cell 
counting by the NIS.ai function utilizing machine learning has the 
following advantages.
• �Highly accurate inference can be achieved with just a few training 

images.
• �More advanced analyses can be conveniently performed by using 

the NIS.ai function in combination with the existing image analysis 
functions of NIS-Elements.

Digital staining (using Convert.ai) and segmentation (using Segment.
ai) of cell nuclei were performed using a phase contrast image, and the 
accuracy of a cell count based on the result was compared with that 
based on a result using a fluorescent image.

Materials and Methods
• �Cell: BS-C-1 cells (RFP-laminB1 constitutive expression cell line), HeLa 

cells
• �Reagent: Hoechst 33342 (Thermo Fisher Scientific), NucSpotLive 488 

Nuclear Stain (Biotium Inc.)
• �Microscope: Ti-E inverted microscope (Nikon)

• �Objective: CFI S Plan Fluor ELWD ADM 20XC  NA0.45 (Nikon) 
• �Measurement conditions: Using a microscope equipped with the above 

objective, time-lapse images of a sample were captured every 2 hours in 
a stage top incubator (Tokai Hit) with a 37˚C and 5% CO2 environment. 
An EMCCD camera (iXon3, Andor) was used for image acquisition. 
Fixed cells were also photographed under the same conditions.

After image acquisition, an estimation of cell nuclei was obtained using 
either Convert.ai or Segment.ai of the NIS.ai function, and quantified 
using the nuclear counting function of the NIS-Elements software.

Training Conditions

Convert.ai Segment.ai

Cell type used BS-C-1 cells HeLa cells HeLa cells

No. of training 
images

70 75 24

Training im
age

Input Phase contrast image

Output
RFP fluorescent image 
(expressing laminB1)

Hoechst fluorescent 
image

(nuclear fluorescence 
staining)

Visually segmented 
mask

Training frequency 
(iterations)

1000

Results
Since it is possible to estimate the position and number of cell nuclei and 
dead cells using phase contrast images, consideration of the performance 
of fluorescent dyes and the effects of fluorescent dyes on cells is not 
required. For this reason, using the NIS.ai function is very effective for 
repeated assays and analyses of cells that are sensitive to fluorescent dye 
staining.

The NIS.ai function enables learning and inference with a small number of 
training images. Furthermore, it can be applied to various analyses when 
combined with other existing functions of the NIS-Elements software.



Fig. 1: Estimating the cell nucleus using NIS.ai (Convert.ai)
(a) �From left to right: (phase contrast) image input to NIS.ai, fluorescent image of RFP-

laminB1 as ground truth, and output image by NIS.ai. The lower row shows images 
merged with the phase contrast image. Scale bar: 100μm

(b) Cell proliferation scatter plot

(c) �Inferred cell images with different densities (from the left, 30/50/80/100%). The upper 
row shows the ground truth of fluorescence of nuclei (RFP-laminB1) and the lower row 
shows the images output by NIS.ai (Convert.ai). Scale bar: 100μm

(d, e) �Quantitative evaluation of accuracy. Detection (true positive), false detection (false 
negative), and over-detection (false positive) at each cell density were determined 
using the coordinates of the center of gravity of the nuclei in ground truth and the 
nuclei estimated by Convert.ai. F-scores were also calculated.
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Creating a growth curve
Verification of cell proliferation using microscopic images is often 
performed using the number of cell nuclei counted by such methods as 
fluorescent protein expressing cell usage and fluorescent dye staining, as 
well as cell confluency in diascopic images.
However, the process of generating a stable cell line that expresses 
fluorescent proteins is complicated, and cells that transiently express 
fluorescent proteins have such risks as unstable gene transfer efficiency 
and an overexpression effect on cell function.
In addition, when using cell confluency in the field of view as an index, it 
is difficult to obtain accurate measurements because the cell area varies 
from cell to cell or by confluency. For example, even if confluency exceeds 
100%, the cells continue to divide for a while, but the confluency remains 
unchanged.
Accordingly, it was verified whether the cell nucleus could be accurately 
estimated from a phase contrast image using NIS.ai (Convert.ai).

Methods
• �A BS-C-1 cell line which consistently expresses RFP-laminB1 localized in 

the nuclear envelope was photographed every 2 hours and verified (Fig. 
1a).

• �70 training images (phase-contrast images and RFP-laminB1 fluorescent 
images) with different cell confluencies (20%, 50%, 80%, 100%, 
120%) were captured and prepared to create a learning data set in 
advance.

• �A growth curve was created by plotting the number of cell nuclei at 
each time point (Fig. 1b).

• �The accuracy of the estimation results was verified using the F-score 
that is a general evaluation index for machine learning (Fig. 1 d, e). The 
closer the F-score is to 1, the higher the accuracy.

• �Each value was calculated based on an evaluation standard of whether 
the center of gravity of the nucleus in the ground truth image and that 
of the nucleus estimated by Convert.ai are within 10 pixels of each 
other.

Results
• �Nucleus localization in the image estimated by Convert.ai was 

confirmed as being substantially the same as localization of the ground 
truth of RFP-laminB1 (Fig. 1a).

• �The proliferation curve created based on the image inferred by Convert.
ai was extremely close to that of the fluorescent image (Fig. 1b).

• �It was shown that estimation accuracy is maintained even when cell 
confluency changes (Fig. 1c).

• �In the verifications using F-scores, Convert.ai maintained sufficient 
estimation accuracy for all cell confluences. It was also possible to 
estimate cell nuclei even when the number of cells increased and the 
distance between cells decreased (Fig. 1d, e).

• �There was a tendency for estimation accuracy to increase with lower 
cell confluences.

Summary
• �Nuclear digital stain using NIS.ai (Convert.ai) is possible for highly 

accurate estimation without the need for staining.
• �NIS.ai (Convert.ai) is an effective tool for users because it has such 

merits as preventing phototoxicity due to fluorescence excitation and 
reducing experimental costs and work such as staining.

1. Cell nucleus estimation (using Convert.ai)



Fig. 2: Detection of dead cells using NIS.ai (Segment.ai)
(a) �Segment.ai output results. Left: phase contrast image as input; Center: position of dead 

cells by manual detection; Right: detection of dead cells by NIS.ai (Segment.ai). Scale 
bar: 100μm

(b) �Left: chronological change graph of the number of detections by Segment.ai;  
Right: comparison of manually detected dead cells and those detected by Segment.ai in 
five different fields of view.

①Estimation of cell nuclei (from phase 
contrast image): Convert.ai

②Detection of dead cells (from phase 
contrast image): Segment.ai

③Derivation of number of living cells 
 (① - ②)

(c) �Estimated image in the same field of view. Left: phase contrast image; Center: image 
output by Convert.ai (NIS.ai_NuclearStaining); Right: detection by Segment.ai (NIS.ai_
DeadSegment). Scale bar: 10μm

(d) Process for deriving the number of living cells
(e) �Chronological change graph of the number of detected live cells. The number of living 

cells is calculated by subtracting NIS.ai_DeadSegment (estimated number of dead cells 
by Segment.ai) from NIS.ai_LiveCells (estimated number of all cells by Convert.ai).
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Detection of dead cells
Since the number of dead cells increases as confluency increases in 
proliferating cells, it affects accurate live cell counts. On the other hand, 
since easy-to-use stain reagents such as Hoechst also stain dead cells, 
this makes it difficult to distinguish only living cells. Although dead cells 
can be removed by washing, it is complicated since it requires working on 
the microscope stage during long-term fixed-point time-lapse imaging.
Therefore, whether efficient dead cell estimation of HeLa cells is possible 
was investigated using NIS.ai (Segment.ai).

Methods
• �As training images, 24 images of dead cell masks were created 

visually and manually with the degree of chromatin aggregation, cell 
morphology, and halo intensity of phase contrast images as indices.

• �In order to estimate the total cell nuclei, 75 training images (phase 
contrast images and Hoechst fluorescent stained images) with different 
cell confluences (20%, 50%, 80%, 100%, 120%) were taken in 
advance and utilized in Convert.ai.

Results
• �It became clear that Segment.ai can estimate only dead cell regions 

from phase contrast images (Fig. 2a).
• �The result shows that the inference area of dead cells by Segment.ai 

increases with the passage of time (Fig. 2b).
• �This result is consistent with previous findings that cell death occurs 

and increases as the culture period increases and confluency increases.
• �To verify accuracy, Segment.ai output was compared with visual 

detection, and approximate values were obtained for each of the five 
different fields of view (Fig. 2b).

Next, the possibility of counting only the number of living cells was 
examined.
• �The number of living cells was obtained by subtracting the number of 

dead cells estimated by Segment.ai from the number of whole cells 
estimated by Convert.ai (Fig. 2c, d).

• �The percentage of dead cells increases with the passage of culture time 
and about 20% of dead cells were mixed in overconfluent states (Fig. 
2e).

Summary
• �In the past, multiple stainings had to be performed to count the total 

number of cells and the number of dead cells, but these numbers can 
now be obtained by NIS.ai using only diascopic (phase contrast) images.

• �Since counting from diascopic images does not require fluorescent 
staining, fluorescent staining can be used for other detection purposes.

• �It is suggested that when cell morphology is used as an index for 
training models, as in this investigation, it can be used to detect not 
only dead cells, but also cells showing unique morphologies in a cell 
population.

• �The NIS.ai function can be an effective tool for screening assays that 
require large amounts of image processing and assays that require 
multiple simultaneous stainings.

2. Live cell count (using Convert.ai and Segment.ai)



Fig. 3: Photobleaching of fluorophores in long-term observation
(a) �Images comparing detection by fluorophores and estimation by NIS.ai. The images on 

the left (0h) are at start of observation, and those on the right (40h) are after 40 hours. 
Green: nuclei detected by fluorophores, yellow: nuclei estimated by NIS.ai. The lower 
row shows images merged with a phase contrast image. Scale bar: 100μm

(b) �Scatter plot of the number of nuclei. NIS.ai: output by Convert.ai, Fluorophore: number 
of nuclei detected by conventional image processing from fluorescent images of 
dyes, Re_staining: number of nuclei detected by conventional image processing from 
fluorescent images obtained after dyeing at the end point.
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Creating a growth curve
Generally, a nuclear count using microscopic images is performed by 
staining cell nuclei with a fluorescent dye. However, since the fluorescent 
dye is not synthesized inside the cell, the amount of dye per cell decreases 
with division, resulting in color reduction. Also, the potential effect 
of fluorescent dye toxicity on cell dynamics, in addition to fluorescent 
photobleaching and phototoxicity caused by repeated irradiation of 
excitation light, cannot be ignored. Moreover, depending on cell type, 
there are some cells to which a fluorescent dye cannot be applied, and 
some cells that dye unevenly.
We therefore investigated whether using NIS.ai (Convert.ai) can solve the 
above problems. 

Methods
• �Counted fluorescent dye-stained HeLa cell nuclei using conventional 

image processing.
• �The above cell number was compared with the number of cell nuclei 

estimated from a phase contrast image by Convert.ai.
• �The training model created and used in “2. Live cell count” was used 

for the estimation of cell nuclei.

Results
• �In conventional image processing, which performs nuclear detection 

using a fluorescent dye, detection becomes difficult from the early 
stages as the dye decays, and deviation from the result estimated by 
Convert.ai increased with time (Fig. 3a, b).

• �To confirm accuracy, the cell nuclei were stained at the end point and 
compared with the estimation by Convert.ai. The result confirmed that 
the estimation by Convert.ai accurately represented the number of cells.

Summary
The following advantages of NIS.ai (Convert.ai) were recognized.
• �Stable estimation of cell numbers is possible
• �Reducing the cost and workload of staining and the effect of 

phototoxicity due to excitation light is possible while maintaining high 
nuclear count accuracy.

• �There is no need to consider optimum dyeing conditions.
• �Since phototoxicity can be minimized, NIS.ai (Convert.ai) is very 

effective for assays that require long-term observation and assays with 
short imaging intervals.

3. Avoiding the effects of fluorescent dye photobleaching (using Convert.ai)



AI module for microscopes (Convert.ai)
Enables a network to be trained to generate fluorescent images from 
unstained cell images in phase contrast, differential interference contrast, 
and other types of images. As this makes long-term time-lapse imaging 
possible without fluorescent staining, non-invasive analysis that does not 
damage cells due to excitation light can be realized.

AI module for microscopes (Segment.ai)
Enables a network to be trained to generate images in which only the 
target cells are identified from images that contain a variety of cells. 
As conventional binarization cannot classify cells of a specific shape or 
size, manual classification is necessary; however, Segment.ai enables 
automatic learning-based classification.

Product Information

Fig. 4: Toxic effect on cells by fluorophores
(a) �The images on the left show a Hoechst experimental group, while those on the 

right are images output by Convert.ai of a non-Hoechst experimental group. The 
upper row (0h) were taken at the start of observation and the lower row (60h) 
after 60 hours. Scale bar: 100μm

(b) �A scatter plot, where the average number of nuclei in each of the following four 
fields of view was plotted (average ± SD).

• Con.Es: output by Convert.ai (non-Hoechst experimental group)
• Con.Dye: number of stained nuclei (non-Hoechst experimental group)
  * Stained/measured only at the end point to avoid the effects of dyes
• Hoechst.Es: output by Convert.ai (Hoechst experimental group),
• Hoechst.Dye: number of stained nuclei (Hoechst experimental group)
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Detecting the effects of dyes
Caution was required, since dyes commonly used for cell nuclei, such as 
Hoechst, affect cells depending on conditions.
Therefore, NIS.ai (Convert.ai) was used to evaluate the effect of Hoechst 
dyes on cell behavior.

Methods
• �HeLa cell nuclei were stained with Hoechst and counted by conventional 

image processing (Hoechst experimental group).
• �NIS.ai (Convert.ai) estimation was also performed on the images of the 

Hoechst experimental group.
• �As a control experiment, the same number of HeLa cells was seeded in 

another well, and their cell nuclei estimated by Convert.ai (non-Hoechst 
experimental group).

• �To confirm the estimation accuracy of the non-Hoechst experimental 
group, staining with fluorescent dye was performed at the end point, 
and the number of cells counted by conventional image processing.

• �A growth curve was created under each condition to evaluate the effect 
of stain dye on cell growth.

• �The training model created and used in “2. Live cell count” was used 
for the estimation of cell nuclei.

Results
• �Regarding the number of cell nuclei in the Hoechst experimental group, 

the results of the cell nucleus count by conventional image processing 
and the cell nucleus count by Convert.ai were in agreement (Fig. 4b).

• �The growth curve (Fig. 4b) confirmed that in the Hoechst experimental 
group, there was a tendency for proliferation to be suppressed 
compared to the non-Hoechst experimental group (not because of 
increased cell death). This is clear from the images (Fig. 4a). This 
phenomenon can be an obstacle to accurately grasping the behavior of 
cells.

Summary
By using NIS.ai (Convert.ai and Segment.ai), it is possible to observe and 
understand the correct behavior of cells without the above concerns. 
Label-free cell nucleus detection has advantages for users.

4. Avoiding the effects of fluorescent dye staining on cells (using Convert.ai)

0h

60h


