DIGITAL SIGHT SERIES
Digital Cameras for Microscopes
Nikon Digital Sight series
Introducing a new model with excellent cost performance.

The new Digital Sight 1000 is an economical color camera solution that can directly display high-definition microscope images on a full HD display without using a PC. As with the DS-Fi3 and DS-Ri2, it can also be connected to a tablet PC to save space and easily acquire images.

Four camera options covering two computing platforms

Using a tablet PC

Using a desktop PC

Only NIS-Elements F is compatible with Digital Sight 1000.
Microscope Camera

Digital Sight 1000

2.0 megapixel Color Full HD

Equipped with a 2 megapixel CMOS image sensor, the Digital Sight 1000 can display, capture and save full HD, 1920x1080 pixel images at 30 frames / second.

Full HD images

Stand-alone mode

By connecting a Full HD display and a mouse, the Digital Sight 1000 can be used without a PC, conserving bench space. Captured images and videos can be saved directly to an SD card which is inserted into the camera. Users can easily display scale bars, measure areas and calculate distances between two points.
High-resolution images

A CMOS high density 5.9 megapixel sensor produces high resolution images. USB3.0 data transfer allows fast focusing at high resolution, and easy capture images in all types of observation methods such as brightfield, differential interference contrast, and phase contrast.

Tubular adenoma, HE staining (Objective: CFI Plan Apochromat Lambda 4X)
Photos courtesy of Dr. Yasunori Ohta, Department of Pathology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo
High sensitivity, low noise

Quantum efficiency and read noise have been greatly improved, providing better capability for acquisition of fluorescent images with better signal-to-noise ratios than before.

![DS-Fi3 / Quantum efficiency graph](image)

Breast cancer, FISH method (Objective: CFI Plan Apochromat Lambda 100X Oil)
Photos courtesy of: Hironao Kusakari, Diagnostic Pathology, St. Marianna University Hospital

Superior color reproduction

Nikon is well-known for outstanding and lifelike color reproduction, and developing superior algorithms for creating results that look like the actual samples. These algorithms are used in all of the color cameras in the digital sight lineup.

![Uterine cervix Pap. Staining](image)
Uterine cervix Pap. Staining
(Objective: CFI Plan Apochromat Lambda 40XC)
Photos courtesy of: Kazuhiro Mita, Department of Pathology, Yokohama City University Hospital

![Bone marrow](image)
Bone marrow
(Objective: CFI Plan Achromat NCG 40X)
Photos courtesy of: Clinical Laboratory Department, Yokohama City University Hospital

High-speed live display

Fast USB3.0 data transfer means fast, smooth live updating of images for finding samples or focusing, even at full resolution.

Camera Control

The DS-Fi3 interfaces with PC via a USB3.0 interface directly to the camera head, and uses NIS-Elements series software for image acquisition.
Two Large Sensor high resolution
16.25-megapixel CMOS image sensors
for microscopy

Two Nikon FX-format CMOS image sensor cameras join the Digital Sight series of microscope digital cameras: the DS-Ri2 color digital camera and the DS-Qi2 monochrome digital camera. High pixel density and large field of view coupled with USB3.0 high speed data transfer offer fast frame rates and high resolution images with these CMOS image sensors.

Large Format
CMOS image sensors

Nikon manufactures CMOS image sensors and imaging technologies for professional DSLR cameras, and has optimized our sensors for microscopy.
16.25 megapixel (not interpolated) and accurate color rendition are features that make the DS-Ri2 an excellent choice for recreating color images as they eyes see them.

High pixel density, high sensitivity and low noise are key features of the DS-Qi2 monochrome camera.

The tissues of the liver, HE staining
(Objective: CF Plan Apochromat Lambda 10X)
Photos courtesy of: Kazuhiro Muraoka, Photography Division, Tokyo Women’s Medical University

Pig kidney epithelial cells expressing GFP-EB3 tubulin
Sample courtesy of: Michael Davidson, National High Magnetic Field Laboratory, Florida State University
Fast, one-shot capture of ultra-high resolution color images.

Microscope Camera

DS-Ri2

High-resolution images

16.25-megapixel CMOS image sensors for astonishing image quality

The DS series enables one-shot instantaneous capture and fast storage of images with resolution as high as 4908x3264 pixels, without pixel shifting or pixel stepping. This pixel density is ideally suited for photomicrography of ultra-fine structures or patterns in biological or industrial samples, at low or high magnifications.

Mouse cerebellum sagittal section, HE staining (Objective: CFI Plan Apochromat Lambda 4X)
Photography with the natural colors seen through the microscope

Nikon is a leader in development of algorithms for reproducing color just as the eyes see it

The DS models’ image processing engine is based on extensive data accumulated over many years of developing microscope color digital cameras, resulting in perfect reproduction of the colors your eyes see in the microscope.

High-speed live display

High-speed display, even of supra-HDTV-class live images

The DS-Ri2 can display 4908×3264 pixel (full-pixel) images at 6 fps, or 1636×1088 pixel (3×3 pixel averaging) images at 45 fps.

This fast-live frame rate makes fine focusing easy to perform.

High sensitivity, low noise

Fluorescent color image capture with high signal to-noise ratio

Sensitivity settings that span the range from ISO200 to ISO12800 allow the capture of vivid fluorescent color images.

Photos courtesy of: Dr. Atsushi Furuhata and Noriyoshi Sueyoshi, Assistant General Manager, Laboratory of morphology and image analysis, BioMedical Research Center, Juntendo University Graduate School of Medicine

Photos courtesy of: Drs. Keiko Gengyo-Ando and Junichi Nakai, Saitama University Brain Science Institute
Capture Low light fluorescence and Large Fields of View

Monochrome Microscope Camera

DS-Qi2

16.25
megapixel

Monochrome

Cooled

High sensitivity
Detections even faint fluorescent signals
7.3 μm pixels, high quantum efficiency, and very low read noise allow the DS-Qi2 to read in even faint fluorescent signals.

Excellent linearity
Reliable quantitative analysis made possible
With a linearity error of ±1%, the DS-Qi2 is a superb tool for measuring intensities in fluorescence samples, including time-based intensity measurement and ratiometric measurement.

High frame rate
Fast focusing, even with fluorescent images
With a high-sensitivity CMOS image sensor and USB 3.0-based data transfer, the DS-Qi2 enables high-speed live imaging and image capture at up to 45 fps (1636×1088 pixels).

Low noise
Acquires dim fluorescent signals with ultra-low noise
Both 2.2 electrons read noise coupled with a large full-well capacity and 0.6 electrons dark current allow the acquisition of 14bit fluorescence images with very little noise.

Indian Muntjac Deer Skin Fibroblast Cells, Cytoskeletal F-actin labeled with Alexa Fluor 488
Sample courtesy of: Michael Davidson and Florida State University

LLC-PK1 cells expressing GFP-EB3 tubulin with low noise. Large linear full well capacity allows acquiring both the brightest and dimmest areas in a single capture.
Sample courtesy of: Michael Davidson, National High Magnetic Field Laboratory, Florida State University
With a large field of view and pixel density, and low noise, the DS-Qi2 is ideal for time-resolved imaging applications.

Time-lapse photography

Fluorescent time-lapse imaging through integration with NIS-Elements software

With a large field of view and pixel density, and low noise, the DS-Qi2 is ideal for time-resolved imaging applications.

Rat primary culture neuron
Dendron labeled with MAP-2 (Red) and Actin (cytoskeleton) labeled with Phallolidin (Green)

LLC-PK1 cells expressing GFP-EB3 tubulin (green) and H2B-labeled histones (red) illustrating the large field of view of the DS-Qi2 camera.
Sample courtesy of: Michael Davidson, National High Magnetic Field Laboratory, Florida State University
Integration with the comprehensive imaging software series

Nikon uses the NIS-Elements series as control software. NIS-Elements allows functions from basic imaging to control of the microscope and peripheral devices to be performed, as well as the measurement, analysis, and management of acquired images. Four basic packages and a variety of optional modules are available to suit every application and objective.

Free package
The bundled free package offers functions for the display of scale on live images, full-screen display, and more. The simple operation screen makes shooting easy.

Documentation package
The documentation package is equipped with measurement and report creation functions. It enables general microscopic image acquisition in fields from biomedical to industrial, and is expandable through optional added features such as EDF and databases.

Research package
The research package enables the construction of advanced image acquisition systems, including multidimensional imaging (up to 4 dimensions for Br, 6 dimensions for Ar), through integration with systemized microscopes. Sets equipped with a rich range of image processing and analysis functions are available for every application.

Compatible OS: Windows® 10 Pro (32/64-bit version), NIS-Elements Ar is only compatible with the 64-bit version.

* For information about compatible desktop PCs, contact Nikon.

Multichannel (Multi Color)
NIS-Elements can acquire full bit depth multi-color images, combining multiple fluorescence wavelengths and different illumination methods (DIC, phase contrast etc.), while offering independently scalable channels.

Z-series
Through motorized focus control, NIS-Elements reconstructs and renders 3D images from multiple Z-axis planes.

Multi-dimensional Image Display
NIS-Elements displays time lapse, multi-channel, multiple X, Y, Z positions in an intuitive layout, which allows for automatic playback and the ability to select subsections of the data to be saved as a new file.
HDR (High Dynamic Range) image acquisition

HDR creates an image with appropriate brightness in both the dark and bright regions in a sample by combining multiple images acquired with different exposure settings. It is also possible to create HDR images using multiple captured images.

1. Area 1 is underexposed
2. Area 2 is overexposed

Captures both areas 1 and 2 with optimal exposure

Manual measurement and image annotation

Manual Measurement allows easy measurement of length and area by drawing lines or an object directly on the image. The results can be attached to the image, and also exported as text or to an Excel spreadsheet.

Auto measurement (Object Counting)

Performs binarization on images using previously set thresholds to measure the number, area, brightness, etc. of identified objects.

EDF (Extended Depth of Focus)

Creates a single, all-in-focus image from images of differing focus. Such images can now be created by simply turning the focus knob.

Classifier

Object classifier uses objects identified by thresholding along with additional features such as shape factors, and other statistical methods including nearest neighbor and neural networks for classifying objects into multiple categories. It is also possible to teach the module based on interactive ‘picking’ of image pixels.

Pixel Classifier

This function classifies each pixel in the image with RGB/HIS and intensity across the whole image. Results are reported in percentage and it is possible to save and reuse parameters across a large sample of images. Multiple binary layers are also displayed with multiple colors on the image and are available with other analysis tools within the software package.

Image stitching (Large Image)

Stitches together images from multiple fields of view during shooting to create an image with wide field of view. Images already acquired can also be stitched together.
Allows intuitive control of microscope cameras from tablet PCs

Simply installing NIS-Elements L on a tablet PC enables setting and control of DS-Fi3/DS-Ri2 microscope cameras, live image display, and image acquisition.

(Compatible OS: Windows® 10 Pro) * For information about compatible tablet PCs, contact Nikon.

User Interface for naturally simple operation

NIS-Elements L displays various menus for image capture, saving, display, measurement and annotations using intuitive icons. It also supports touch screen operation.

A wide variety of tools

NIS-Elements L enables the conducting of simple measurements on images, with input of lines and comments. These can also be written onto and saved with the image, and measurement data can be output.

Scene mode

Ten camera setting patterns for optimal color reproduction and contrast for each microscope light source, observation method and type of sample, as well as custom settings, can be selected.

(Available with DS-Fi3/DS-Ri2 microscope cameras)

<table>
<thead>
<tr>
<th>Biological Scene Mode</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightfield</td>
<td>HE</td>
<td>ELISA</td>
</tr>
<tr>
<td>LED-Brightfield</td>
<td>Asbestos</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line distance</td>
</tr>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Circle</td>
</tr>
<tr>
<td>Circle distance</td>
</tr>
<tr>
<td>Pitch distance</td>
</tr>
<tr>
<td>Angle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annotate function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
</tr>
<tr>
<td>Arrow</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>Marker</td>
</tr>
<tr>
<td>Polyline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graticule/scale function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosshairs</td>
</tr>
<tr>
<td>Simple crosshairs</td>
</tr>
<tr>
<td>Circle</td>
</tr>
<tr>
<td>Grid</td>
</tr>
<tr>
<td>Horizontal scale</td>
</tr>
<tr>
<td>Vertical scale</td>
</tr>
</tbody>
</table>

Other functions

- **Split screen display function**: A live image is displayed on the left side of the screen and the saved image is displayed on the right side. When synchronization is activated, synchronized magnification is applied to both images.
- **Camera information**: A histogram and metadata of the image are displayed.
- **Full screen**: The image is displayed across the entire screen.
- **Saving**: The displayed image is saved with a new file name.
Specifications

<table>
<thead>
<tr>
<th>Model name</th>
<th>Digital Sight 1000</th>
<th>DS-Fi3</th>
<th>DS-Ri2/DS-Qi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image sensor</td>
<td>1/2.8 inch Color CMOS image sensor Size: 5.57 × 3.13 mm</td>
<td>1/1.8 inch Color CMOS image sensor Size: 6.91 × 4.92 mm</td>
<td>Nikon FX-format Color CMOS image sensor Size: 36.0 × 23.9 mm</td>
</tr>
<tr>
<td>Lens mount</td>
<td>C-mount</td>
<td>F-mount</td>
<td></td>
</tr>
<tr>
<td>Cooling method</td>
<td>—</td>
<td>—</td>
<td>Electronic cooling</td>
</tr>
<tr>
<td>ISO sensitivity (recommended exposure index)</td>
<td>Standard: equivalent to ISO 150</td>
<td>Standard: equivalent to ISO 50 (Selectable from ISO 50 to ISO 3200 equivalent)</td>
<td>Standard: equivalent to ISO 200 (Selectable from ISO 200 to ISO 12800 equivalent)</td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>77%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Full well Capacity</td>
<td>—</td>
<td>—</td>
<td>60000e (typ.)</td>
</tr>
<tr>
<td>Readout noise</td>
<td>—</td>
<td>—</td>
<td>2.2e (typ.)</td>
</tr>
<tr>
<td>Live display mode* (maximum fps)</td>
<td>—</td>
<td>—</td>
<td>0.6e-/p/s (Ta=25°C) (typ.)</td>
</tr>
<tr>
<td>Exposure time</td>
<td>1 m sec – 10 sec</td>
<td>100 µsec – 30 sec</td>
<td>100 µsec – 120 sec</td>
</tr>
<tr>
<td>Photometry mode</td>
<td>Average photometry 1920 × 1080 pixels (all area)</td>
<td>Average photometry: Average intensity within the photometry area Peak photometry: Maximum intensity within the photometry area</td>
<td></td>
</tr>
<tr>
<td>Exposure control</td>
<td>Automatic exposure, Manual exposure</td>
<td>One-time automatic exposure: Exposure time is adjusted automatically for one-time within the optimum range for the camera Continuous automatic exposure: Automatic exposure adjustment is performed continuously to keep the exposure within the camera Manual exposure: Exposure time and gain settings are made manually</td>
<td></td>
</tr>
<tr>
<td>Exposure correction</td>
<td>Available</td>
<td>±1EV Step:1/6EV</td>
<td>—</td>
</tr>
<tr>
<td>Interface</td>
<td>USB2.0 (connect with PC or USB mouse) x 1, HDMI x 1, SD card slot x1**</td>
<td>USB2.0 (connect with PC or USB mouse) x 1, HDMI x 1, SD card slot x1**</td>
<td>USB 3.0 (connect with PC) x 1, External trigger x 1</td>
</tr>
<tr>
<td>Power supply</td>
<td>AC100-240V 50Hz/60Hz</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Power consumption</td>
<td>3 W 4.8 W</td>
<td>—</td>
<td>13 W 24 W</td>
</tr>
<tr>
<td>Operating environment</td>
<td>0-40°C, 60% RH max. (without condensation)</td>
<td>—</td>
<td>0-30 °C, 80% RH max. 30-40°C, 60% RH max. (without condensation)</td>
</tr>
</tbody>
</table>

*Maximum frame rate depends on exposure time. **Both SD and SDHC memory cards are available.

Only NIS-Elements F is compatible with Digital Sight 1000.

![Digital Sight 1000](image1.png)

Digital Sight 1000
- Weight: approx. 400 g
- Weight: approx. 1,200 g

DS-Fi3

DS-Ri2/DS-Qi2

System Diagram

Dimensions

Table Diagram

Notes

Figure

Image

Diagram

Graph

Chart
The digital sight series is not for clinical diagnostic use.

Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer. April 2021 ©2004-2021 NIKON CORPORATION

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries. Company and product names listed in this catalog are trademarks or registered trademarks of each company.

N.B. Export of the products* in this catalog is controlled under the Japanese Foreign Exchange and Foreign Trade Law.

Appropriate export procedures shall be required in case of export from Japan.

*Products: Hardware and its technical information (including software)

WARNING

TO ENSURE CORRECT USAGE, READ THE CORRESPONDING MANUALS CAREFULLY BEFORE USING THE EQUIPMENT.

NIKON CORPORATION
Shinagawa InterCity Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290, Japan
phone: +81-3-6433-3705 fax: +81-3-6433-3785

NIKON INSTRUMENTS INC.
1300 Wall Way, Melville, N.Y. 11747-3064, U.S.A.
phone: +1-631-547-8500, +1-800-52-NIKON (within the U.S.A. only)
fax: +1-631-547-0269
https://www.microscope.healthcare.nikon.com/

NIKON EUROPE B.V. (Headoffice)
Tripps 100, Burgemeesterbuik 101, 1076 ER Amsterdam, Netherlands
phone: +31-20-7099-000 fax: +31-20-7099-298

NIKON INSTRUMENTS (SHANGHAI) CO., LTD.
CHINA phone: +86-21-6841-2050 fax: +86-21-6841-2060
(Beijing branch) phone: +86-10-5831-2028 fax: +86-10-5831-2026
(Guangzhou branch) phone: +86-2-3822-0551 fax: +86-2-3822-0580
https://www.microscope.healthcare.nikon.com/zh_CN/

NIKON CANADA INC.
CANADA phone: +1-905-625-2910 fax: +1-905-625-9953

NIKON FRANCE S.A.S.
FRANCE phone: +33-1-4516-4516 fax: +33-1-4516-4505

NIKON GMBH
GERMANY phone: +49-211-9414-888 fax: +49-211-9414-322

NIKON INSTRUMENTS S.p.A.
ITALY phone: +39-055-300-9601 fax: +39-055-300-993

NIKON GMBH SWITZERLAND

NIKON UK LTD.
UNITED KINGDOM phone: +44-208-247-1717 fax: +44-208-541-4584

NIKON CEE GMBH
AUSTRIA phone: +43-1-972-6111 fax: +43-1-972-6111-40

NIKON SINGAPORE PTE LTD.
SINGAPORE phone: +65-6559-3631 fax: +65-6559-3668

NIKON INSTRUMENTS KOREA CO., LTD.
KOREA phone: +82-2-6288-1900 fax: +82-2-555-4415

Printed in Japan (2104-2.0) Am/Y

Code No. 2CE-MPAK-3